Wednesday, 7 June 2017

Linear Regression To The Moving Mittel Und Glättung Techniken


Vorhersage durch Glättung Techniken Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Anwendungsbereichen im MENU-Bereich auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die rechtzeitig geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Aufhebung der Wirkung durch zufällige Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken zeigen, wenn sie richtig angewendet werden, deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge ein, beginnend von der linken oberen Ecke und den Parameter (s), und klicken Sie dann auf die Schaltfläche Berechnen, um eine Vorhersage zu erhalten. Blank Boxen sind nicht in den Berechnungen enthalten, aber Nullen sind. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Datenmatrix zu wechseln, benutzen Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Prüfung ihres Graphen aufgedeckt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Bedingungsprognosemodellierung. Moving Averages: Moving Averages gehören zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentielle Glättung: Dies ist ein sehr beliebtes Schema, um eine geglättete Zeitreihe zu produzieren. Während bei fortlaufenden Mitteln die bisherigen Beobachtungen gleich gewichtet werden, weist Exponentialglättung exponentiell abnehmende Gewichte zu, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen werden bei der Prognose relativ viel mehr gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser bei der Handhabung von Trends. Triple Exponential Glättung ist besser bei der Behandlung von Parabel Trends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante a. Entspricht etwa einem einfachen gleitenden Mittelwert der Länge (d. H. Periode) n, wobei a und n verwandt sind durch: a 2 (n1) OR n (2 - a) a. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19-tägigen gleitenden Durchschnitt entsprechen. Und ein 40-Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt entsprechen, wobei eine Glättungskonstante gleich 0,04878 ist. Holts Linear Exponential Glättung: Angenommen, die Zeitreihe ist nicht saisonal, aber zeigt Trend. Holts-Methode schätzt sowohl den aktuellen Level als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein besonderer Fall der exponentiellen Glättung ist, indem die Periode des gleitenden Durchschnitts auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft wirksam. Jedoch kann man eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten Mean Absolute Error (MA Error). Wie man mehrere Glättungsmethoden vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognose-Technik gibt, ist der am weitesten verbreitete Ansatz bei der Verwendung visueller Vergleich von mehreren Prognosen, um ihre Genauigkeit zu beurteilen und wählen Sie unter den verschiedenen Vorhersage Methoden. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognosemethoden (unter Verwendung von zB Excel) aufzeichnen, wodurch ein visueller Vergleich erleichtert wird. Sie können die vorherigen Prognosen durch Glättungstechniken JavaScript verwenden, um die vergangenen Prognosewerte zu erhalten, die auf Glättungstechniken basieren, die nur einen einzelnen Parameter verwenden. Holt - und Winters-Methoden verwenden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuche und Fehler für die Parameter auszuwählen. Die einzige exponentielle Glättung unterstreicht die kurzfristige Perspektive, die sie auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die eine kleinste Quadrate zu den historischen Daten passt (oder transformierte historische Daten), repräsentiert die lange Reichweite, die auf dem grundlegenden Trend bedingt ist. Holts lineare exponentielle Glättung erfasst Informationen über den letzten Trend. Die Parameter in Holts-Modell sind Pegel-Parameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist und der Trends-Parameter erhöht werden sollte, wenn die aktuelle Trendrichtung durch die kausalen Faktoren unterstützt wird. Kurzfristige Prognose: Beachten Sie, dass jedes JavaScript auf dieser Seite eine einstufige Prognose bietet. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert dem Ende der Zeitreihendaten hinzu und klicken Sie dann auf dieselbe Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. Zeitreihenmethoden Zeitreihenmethoden sind statistische Techniken, die historische Daten über einen bestimmten Zeitraum akkumulieren. Zeitreihenmethoden gehen davon aus, dass das, was in der Vergangenheit aufgetreten ist, auch in Zukunft stattfinden wird. Wie die Namen Zeitreihen vorschlagen, beziehen diese Methoden die Prognose auf nur einen Faktor - Zeit. Dazu gehören der gleitende Durchschnitt, die exponentielle Glättung und die lineare Trendlinie und gehören zu den beliebtesten Methoden für die Nahbereichsprognose bei Service - und Fertigungsunternehmen. Diese Methoden gehen davon aus, dass sich identifizierbare historische Muster oder Trends für die Nachfrage im Laufe der Zeit wiederholen werden. Moving Average Eine Zeitreihenprognose kann so einfach sein wie die Nachfrage in der aktuellen Periode, um die Nachfrage in der nächsten Periode vorherzusagen. Dies wird manchmal als naive oder intuitive Prognose bezeichnet. 4 Zum Beispiel, wenn die Nachfrage 100 Einheiten in dieser Woche ist, ist die Prognose für die nächste Woche Nachfrage 100 Einheiten, wenn die Nachfrage sich aus 90 Einheiten statt, dann die folgenden Wochen Nachfrage beträgt 90 Einheiten, und so weiter. Diese Art der Prognosemethode berücksichtigt nicht das historische Nachfrageverhalten, das sie nur in der laufenden Periode auf die Nachfrage stützt. Es reagiert direkt auf die normalen, zufälligen Bewegungen in der Nachfrage. Die einfache gleitende Durchschnittsmethode verwendet in der letzten Vergangenheit mehrere Bedarfswerte, um eine Prognose zu entwickeln. Dies neigt dazu, die zufälligen Erhöhungen und Abnahmen einer Prognose, die nur einen Zeitraum verwendet, zu dämpfen oder zu glätten. Der einfache gleitende Durchschnitt ist nützlich für die prognostizierte Nachfrage, die stabil ist und zeigt keine ausgeprägten Nachfrage Verhalten, wie ein Trend oder saisonale Muster. Durchgehende Durchschnitte werden für bestimmte Zeiträume, wie z. B. drei Monate oder fünf Monate, berechnet, je nachdem, wie viel der Prognostiker die Nachfragedaten verkleinern möchte. Je länger die gleitende durchschnittliche Periode, desto glatter wird es sein. Die Formel für die Berechnung der einfachen gleitenden Durchschnitt ist die Berechnung eines einfachen Moving Average Die Instant Paper Clip Office Supply Company verkauft und liefert Bürobedarf an Unternehmen, Schulen und Agenturen innerhalb eines 50-Meile Radius seines Lagers. Das Bürobedarfsgeschäft ist wettbewerbsfähig, und die Fähigkeit, Aufträge umgehend zu liefern, ist ein Faktor, um neue Kunden zu bekommen und alte zu halten. (Büros in der Regel bestellen nicht, wenn sie niedrig auf Lieferungen laufen, aber wenn sie komplett ausgelaufen sind, so dass sie ihre Bestellungen sofort benötigen.) Der Manager des Unternehmens will sicher genug Fahrer und Fahrzeuge zur Verfügung stehen, um Aufträge umgehend zu liefern Sie haben ein ausreichendes Inventar auf Lager. Daher möchte der Manager die Anzahl der Aufträge prognostizieren, die im nächsten Monat auftreten werden (d. h. die Nachfrage nach Lieferungen zu prognostizieren). Aus den Aufzeichnungen der Lieferaufträge hat das Management die folgenden Daten für die letzten 10 Monate angesammelt, von denen es will, um 3- und 5-Monats-Gleitdurchschnitte zu berechnen. Nehmen wir an, dass es Ende Oktober ist. Die Prognose, die sich aus dem 3- oder 5-monatigen gleitenden Durchschnitt ergibt, ist typischerweise für den nächsten Monat in der Sequenz, die in diesem Fall November ist. Der gleitende Durchschnitt wird aus der Nachfrage nach Aufträgen für die letzten 3 Monate in der Sequenz nach folgender Formel berechnet: Der 5-Monats-Gleitender Durchschnitt wird aus den vorangegangenen 5 Monaten der Bedarfsdaten wie folgt berechnet: Der 3- und 5-Monats - Gleitende Durchschnittsprognosen für alle Monate der Bedarfsdaten sind in der folgenden Tabelle dargestellt. Tatsächlich würde nur die Prognose für November auf der Grundlage der letzten monatlichen Nachfrage vom Manager genutzt werden. Allerdings erlauben uns die früheren Prognosen für Vormonate, die Prognose mit der tatsächlichen Nachfrage zu vergleichen, um zu sehen, wie genau die Prognosemethode ist - das ist, wie gut es tut. Drei - und Fünf-Monats-Mittelwerte Beide gleitenden Durchschnittsprognosen in der obigen Tabelle neigen dazu, die Variabilität der tatsächlichen Daten zu verkleinern. Dieser Glättungseffekt kann in der folgenden Abbildung beobachtet werden, in der die 3-Monats - und 5-Monatsdurchschnitte einem Graphen der ursprünglichen Daten überlagert wurden: Der 5-Monats-Gleitender Durchschnitt in der vorherigen Abbildung glättet Schwankungen in größerem Maße als Der 3-Monats-Gleitender Durchschnitt. Allerdings spiegelt der 3-Monats-Durchschnitt die aktuellsten Daten, die dem Büroversorger zur Verfügung stehen. Im Allgemeinen sind die Prognosen, die den längerfristigen gleitenden Durchschnitt verwenden, langsamer, um auf die jüngsten Veränderungen der Nachfrage zu reagieren, als die, die mit kürzerperiodischen Bewegungsdurchschnitten gemacht wurden. Die zusätzlichen Datenperioden dämpfen die Geschwindigkeit, mit der die Prognose reagiert. Die Festlegung der entsprechenden Anzahl von Perioden, die in einer gleitenden durchschnittlichen Prognose verwendet werden, erfordert oft eine gewisse Versuchs - und Fehler-Experimentierung. Der Nachteil der gleitenden Mittelmethode ist, dass sie nicht auf Variationen reagiert, die aus einem Grund auftreten, wie z. B. Zyklen und saisonale Effekte. Faktoren, die Änderungen verursachen, werden in der Regel ignoriert. Es handelt sich im Grunde um eine mechanische Methode, die historische Daten konsistent widerspiegelt. Allerdings hat die gleitende durchschnittliche Methode den Vorteil, einfach zu bedienen, schnell und relativ kostengünstig zu sein. Im Allgemeinen kann diese Methode eine gute Prognose für die kurzfristige, aber es sollte nicht zu weit in die Zukunft geschoben werden. Weighted Moving Average Die gleitende durchschnittliche Methode kann angepasst werden, um die Fluktuationen der Daten besser zu reflektieren. Bei der gewichteten gleitenden Durchschnittsmethode werden den letzten Daten nach der folgenden Formel Gewichte zugeordnet: Die Anforderungsdaten für PM Computer Services (siehe Tabelle für Beispiel 10.3) folgen einem zunehmenden linearen Trend. Das Unternehmen möchte eine lineare Trendlinie berechnen, um zu sehen, ob es genauer ist als die in den Beispielen 10.3 und 10.4 entwickelten exponentiellen Glättung und angepassten exponentiellen Glättungsprognosen. Die für die Berechnungen der kleinsten Quadrate benötigten Werte sind wie folgt: Unter Verwendung dieser Werte werden die Parameter für die lineare Trendlinie wie folgt berechnet: Daher ist die lineare Trendliniengleichung Um eine Prognose für die Periode 13 zu berechnen, sei x 13 im linearen Trendlinie: Die folgende Grafik zeigt die lineare Trendlinie gegenüber den Ist-Daten. Die Trendlinie scheint die tatsächlichen Daten genau zu reflektieren - das heißt, eine gute Passform zu sein - und wäre somit ein gutes Prognosemodell für dieses Problem. Ein Nachteil der linearen Trendlinie ist jedoch, dass sie sich nicht auf eine Trendänderung anpasst, da die exponentiellen Glättungsvorhersagemethoden das sind, wird davon ausgegangen, dass alle zukünftigen Prognosen einer Geraden folgen. Dies begrenzt die Verwendung dieser Methode auf einen kürzeren Zeitrahmen, in dem Sie relativ sicher sein können, dass sich der Trend nicht ändert. Saisonale Anpassungen Ein saisonales Muster ist eine wiederholte Zunahme und Abnahme der Nachfrage. Viele Nachfrageartikel zeigen saisonales Verhalten. Bekleidungsverkäufe folgen jährlichen saisonalen Mustern, mit der Nachfrage nach warmer Kleidung, die im Herbst und Winter zunimmt und im Frühjahr und Sommer abnimmt, während die Nachfrage nach kühlerer Kleidung zunimmt. Die Nachfrage nach vielen Einzelhandelsartikeln, einschließlich Spielzeug, Sportausrüstung, Kleidung, elektronische Geräte, Schinken, Truthähne, Wein und Obst, erhöhen während der Ferienzeit. Grußkarte verlangt in Verbindung mit besonderen Tagen wie Valentinstag und Muttertag. Saisonale Muster können auch auf einer monatlichen, wöchentlichen oder sogar täglichen Basis auftreten. Einige Restaurants haben eine höhere Nachfrage am Abend als am Mittag oder am Wochenende im Gegensatz zu Wochentagen. Verkehr - also Verkauf - an Einkaufszentren nimmt am Freitag und Samstag auf. Es gibt mehrere Methoden, um saisonale Muster in einer Zeitreihenprognose zu reflektieren. Wir beschreiben eine der einfacheren Methoden mit einem saisonalen Faktor. Ein saisonaler Faktor ist ein Zahlenwert, der mit der normalen Prognose multipliziert wird, um eine saisonbereinigte Prognose zu erhalten. Eine Methode zur Entwicklung einer Nachfrage nach saisonalen Faktoren besteht darin, die Nachfrage für jede Saisonperiode durch die jährliche Gesamtnachfrage nach folgender Formel zu teilen: Die daraus resultierenden saisonalen Faktoren zwischen 0 und 1,0 sind in Wirklichkeit der Anteil der gesamten jährlichen Nachfrage jede Saison. Diese saisonalen Faktoren werden mit der jährlichen prognostizierten Nachfrage multipliziert, um die prognostizierten Prognosen für jede Saison zu erzielen. Informieren Sie eine Prognose mit saisonalen Anpassungen Wishbone Farms wächst Puten, um an eine Fleischverarbeitungsfirma während des ganzen Jahres zu verkaufen. Allerdings ist seine Hauptsaison offensichtlich im vierten Quartal des Jahres von Oktober bis Dezember. Wishbone Farms hat die Nachfrage nach Truthühnern für die letzten drei Jahre in der folgenden Tabelle gezeigt: Weil wir drei Jahre Nachfrage haben, können wir die saisonalen Faktoren berechnen, indem wir die gesamte vierteljährliche Nachfrage für die drei Jahre durch die Gesamtnachfrage über alle drei Jahre dividieren : Als nächstes wollen wir die prognostizierte Nachfrage für das nächste Jahr 2000 mit jedem der saisonalen Faktoren multiplizieren, um die prognostizierte Nachfrage für jedes Quartal zu erhalten. Um dies zu erreichen, benötigen wir eine Bedarfsprognose für das Jahr 2000. In diesem Fall, da die Nachfragedaten in der Tabelle einen allgemein ansteigenden Trend zu zeigen scheinen, berechnen wir eine lineare Trendlinie für die drei Jahre der Daten in der Tabelle, um eine grobe zu bekommen Prognose Schätzung: So ist die Prognose für 2000 58,17 oder 58,170 Truthähne. Mit dieser jährlichen Prognose der Nachfrage, die saisonbereinigten Prognosen, SF i, für das Jahr 2000 Vergleich dieser vierteljährlichen Prognosen mit den tatsächlichen Nachfrage-Werte in der Tabelle, scheinen sie relativ gute Prognose-Schätzungen, was sowohl die saisonalen Variationen in den Daten und Der allgemeine Aufwärtstrend. 10-12 Wie ist die gleitende Mittelmethode ähnlich der exponentiellen Glättung 10-13. Welche Auswirkung auf das exponentielle Glättungsmodell erhöht die Glättungskonstante von 10-14. Wie unterscheidet sich die exponentielle Glättung von der exponentiellen Glättung 10-15. Was bestimmt die Wahl der Glättungskonstante für den Trend in einem angepassten exponentiellen Glättungsmodell 10-16. In den Kapitelbeispielen für Zeitreihenmethoden wurde die Startvorhersage immer als die tatsächliche Nachfrage in der ersten Periode angenommen. Schlagen Sie andere Wege vor, dass die Startvorhersage im laufenden Gebrauch abgeleitet werden könnte. 10-17 Wie unterscheidet sich das lineare Trendlinien-Prognosemodell von einem linearen Regressionsmodell für die Prognose von 10-18. Von den Zeitreihenmodellen, die in diesem Kapitel vorgestellt wurden, einschließlich des gleitenden Durchschnitts und des gewichteten gleitenden Durchschnitts, der exponentiellen Glättung und der angepassten exponentiellen Glättung und der linearen Trendlinie, die man als das beste betrachtet. Warum 10-19. Welche Vorteile hat die exponentielle Glättung über eine lineare Trendlinie für die prognostizierte Nachfrage, die einen Trend zeigt. 4 K. B. Kahn und J. T. Mentzer, Prognose in Konsumenten - und Industriemärkten, The Journal of Business Forecasting 14, Nr. 2 (Sommer 1995): 21-28.Linear Regressionsindikator Der lineare Regressionsindikator wird für die Trendidentifikation und den Trend verwendet, der in ähnlicher Weise wie die gleitenden Mittelwerte folgt. Der Indikator sollte nicht mit linearen Regressionslinien verwechselt werden, die gerade Linien an einer Reihe von Datenpunkten angebracht sind. Der Lineare Regressionsindikator zeigt die Endpunkte einer ganzen Reihe von linearen Regressionslinien an, die an aufeinanderfolgenden Tagen gezeichnet wurden. Der Vorteil der Linear Regression Indicator über einen normalen gleitenden Durchschnitt ist, dass es weniger Verzögerung als der gleitende Durchschnitt, reagiert schneller auf Richtungsänderungen. Der Nachteil ist, dass es anfälliger für Whipsaws ist. Der Linear Regressionsindikator eignet sich nur für den Handel mit starken Trends. Signale werden in ähnlicher Weise zu gleitenden Durchschnitten genommen. Verwenden Sie die Richtung der Linear Regression Indicator, um Trades mit einer längerfristigen Anzeige als Filter einzugeben und zu verlassen. Gehen Sie lange, wenn die Linear Regression Indicator auftaucht oder einen kurzen Handel beenden. Gehen Sie kurz (oder verlassen Sie einen langen Handel), wenn die Linear Regression Indicator ausschaltet. Eine Variation auf dem oben genannten ist, Trades einzugeben, wenn der Preis den Linear Regression Indicator kreuzt, aber immer noch beendet, wenn die Linear Regressionsanzeige leuchtet. Maus über Diagrammbeschriftungen, um Handelssignale anzuzeigen. Gehen Sie lang L, wenn der Preis über den 100-tägigen Linear Regressionsindikator übergeht, während der 300-Tag steigt Exit X, wenn der 100-Tage-Linear Regressions-Indikator abschaltet. Gehen Sie lange wieder bei L, wenn der Preis über die 100-Tage-Linear Regression Indicator Exit kreuzt X, wenn die 100-Tage-Linear-Regressionsanzeige nach unten geht Lange L, wenn der Preis über 100-Tage-Linear-Regressions-Exit X übergeht, wenn die 100-Tage-Anzeige ausläuft Go long L, wenn die 300-Tage-Linear Regressionsanzeige nach dem oben gekreuzten Preis auftaucht Die 100-Tage-Anzeige Exit X, wenn die 300-Tage-Linear Regressionsanzeige ausschaltet. Die Bearish Divergenz auf dem Indikator warnt vor einer großen Trendumkehr.

No comments:

Post a Comment