Wednesday 14 June 2017

Moving Average And Exponential Glättung Methoden


Exponentielle Glättung erklärt. Kopiere das Copyright. Der Inhalt von InventoryOps ist urheberrechtlich geschützt und steht nicht zur Wiederveröffentlichung zur Verfügung. Wenn die Leute zuerst den Begriff Exponentielle Glättung begegnen, können sie denken, das klingt wie eine Hölle von viel Glättung. Was Glättung ist. Sie fangen dann an, eine komplizierte mathematische Berechnung vorzustellen, die wahrscheinlich einen Grad in der Mathematik erfordert, um zu verstehen, und hoffe, dass es eine eingebaute Excel-Funktion gibt, wenn sie es jemals tun müssen. Die Realität der exponentiellen Glättung ist weit weniger dramatisch und weit weniger traumatisch. Die Wahrheit ist, exponentielle Glättung ist eine sehr einfache Berechnung, die eine ziemlich einfache Aufgabe vollbringt. Es hat nur einen komplizierten Namen, denn was technisch passiert als Ergebnis dieser einfachen Berechnung ist eigentlich ein wenig kompliziert. Um eine exponentielle Glättung zu verstehen, hilft es, mit dem allgemeinen Konzept der Glättung zu beginnen und ein paar andere gängige Methoden, um Glättung zu erreichen. Was ist Glättung Glättung ist ein sehr häufiger statistischer Prozess. In der Tat, wir regelmäßig begegnen geglättete Daten in verschiedenen Formen in unserem täglichen Leben. Jedes Mal, wenn Sie einen Durchschnitt verwenden, um etwas zu beschreiben, verwenden Sie eine geglättete Zahl. Wenn Sie darüber nachdenken, warum Sie einen Durchschnitt verwenden, um etwas zu beschreiben, werden Sie schnell verstehen, das Konzept der Glättung. Zum Beispiel haben wir gerade den wärmsten Winter auf Rekord erlebt. Wie können wir das gut beurteilen? Wir beginnen mit Datensätzen der täglichen Hoch - und Tieftemperaturen für den Zeitraum, in dem wir Winter für jedes Jahr in der aufgezeichneten Geschichte nennen. Aber das lässt uns mit einer Reihe von Zahlen, die um ein bisschen herumspringen (es ist nicht wie jeden Tag dieser Winter war wärmer als die entsprechenden Tage aus allen früheren Jahren). Wir brauchen eine Nummer, die all das aus den Daten springt, so dass wir einen Winter zum nächsten einfacher vergleichen können. Das Entfernen des Sprungs um in den Daten wird als Glättung bezeichnet, und in diesem Fall können wir einfach einen einfachen Durchschnitt verwenden, um die Glättung zu erreichen. Bei der Bedarfsprognose verwenden wir Glättung, um zufällige Variation (Lärm) aus unserer historischen Nachfrage zu entfernen. Dies ermöglicht es uns, die Nachfragemuster besser zu identifizieren (vor allem Trend und Saisonalität) und die Nachfrage, die zur Schätzung der zukünftigen Nachfrage genutzt werden können. Der Lärm in der Nachfrage ist das gleiche Konzept wie das tägliche Springen um die Temperaturdaten. Nicht überraschend, die häufigste Art und Weise Menschen entfernen Lärm aus der Nachfrage Geschichte ist es, eine einfache durchschnittlich genauer, ein gleitender Durchschnitt zu verwenden. Ein gleitender Durchschnitt verwendet einfach eine vordefinierte Anzahl von Perioden, um den Durchschnitt zu berechnen, und diese Perioden bewegen sich, wenn die Zeit vergeht. Zum Beispiel, wenn Im mit einem 4-Monats-gleitenden Durchschnitt, und heute ist der 1. Mai, Im mit einem durchschnittlichen Nachfrage, die im Januar, Februar, März und April aufgetreten. Am 1. Juni werde ich die Nachfrage von Februar, März, April und Mai verwenden. Gewichteter gleitender Durchschnitt Wenn wir einen Durchschnitt verwenden, wenden wir die gleiche Bedeutung (Gewicht) auf jeden Wert im Datensatz an. Im 4-Monats-Gleitender Durchschnitt repräsentierte jeder Monat 25 des gleitenden Durchschnitts. Bei der Verwendung der Nachfrage Geschichte, um zukünftige Nachfrage (und vor allem zukünftige Trend) zu projizieren, ist es logisch, zu dem Schluss zu kommen, dass Sie möchten, dass die jüngste Geschichte einen größeren Einfluss auf Ihre Prognose haben wird. Wir können unsere gleitendurchschnittliche Berechnung anpassen, um verschiedene Gewichte auf jede Periode anzuwenden, um unsere gewünschten Ergebnisse zu erhalten. Wir geben diese Gewichte als Prozentsatz aus, und die Summe aller Gewichte für alle Perioden muss bis zu 100 addieren. Wenn wir also entscheiden, dass wir 35 als das Gewicht für die nächste Periode in unserem 4-Monats-gewichteten gleitenden Durchschnitt anwenden wollen, können wir Subtrahieren Sie 35 von 100, um zu finden, dass wir noch 65 übrig haben, um über die anderen 3 Perioden aufzuteilen. Zum Beispiel können wir mit einer Gewichtung von 15, 20, 30 und 35 für die 4 Monate (15 20 30 35 100) enden. Exponentielle Glättung. Wenn wir wieder auf das Konzept der Anwendung eines Gewichts auf die jüngste Periode (wie etwa 35 im vorigen Beispiel) und die Ausbreitung der restlichen Gewicht (berechnet durch Subtraktion der jüngsten Periode Gewicht von 35 von 100 bis 65), haben wir Die Grundbausteine ​​für unsere exponentielle Glättung. Die Steuerungseingabe der exponentiellen Glättungsberechnung ist als Glättungsfaktor (auch Glättungskonstante genannt) bekannt. Es stellt im Wesentlichen die Gewichtung dar, die auf die jüngste Periode verlangt wird. Also, wo wir 35 als Gewichtung für die jüngste Periode in der gewichteten gleitenden Durchschnittsberechnung verwendet haben, könnten wir auch wählen, 35 als Glättungsfaktor in unserer exponentiellen Glättungsberechnung zu verwenden, um einen ähnlichen Effekt zu erhalten. Der Unterschied zur exponentiellen Glättungsrechnung ist, dass anstelle von uns auch herauszufinden, wie viel Gewicht für jede vorherige Periode gilt, wird der Glättungsfaktor verwendet, um das automatisch zu machen. Also hier kommt der exponentielle Teil. Wenn wir 35 als Glättungsfaktor verwenden, wird die Gewichtung der letzten Periodennachfrage 35 sein. Die Gewichtung der nächsten letzten Perioden verlangt (der Zeitraum vor dem jüngsten) 65 von 35 (65 kommt von der Subtraktion von 35 aus 100). Dies entspricht 22,75 Gewichtung für diesen Zeitraum, wenn Sie die Mathematik machen. Die nächste jüngste Periode verlangt 65 von 65 von 35, was 14,79 entspricht. Die Periode davor wird als 65 von 65 von 65 von 35 gewichtet, was 9,61 entspricht, und so weiter. Und das geht zurück durch alle Ihre vorherigen Perioden den ganzen Weg zurück zum Anfang der Zeit (oder der Punkt, an dem Sie begonnen haben, exponentielle Glättung für dieses bestimmte Element). Du denkst wahrscheinlich, dass das aussieht wie eine ganze Menge Mathe. Aber die Schönheit der exponentiellen Glättung Berechnung ist, dass anstatt zu rechnen, um jede vorherige Periode jedes Mal, wenn Sie eine neue Perioden Nachfrage erhalten, verwenden Sie einfach die Ausgabe der exponentiellen Glättung Berechnung aus der vorherigen Periode, um alle vorherigen Perioden zu repräsentieren. Sind Sie verwirrt, doch wird dies sinnvoller sein, wenn wir uns die tatsächliche Berechnung ansehen. Normalerweise verweisen wir auf die Ausgabe der exponentiellen Glättungsberechnung als nächster Periodenvorhersage. In Wirklichkeit braucht die endgültige Prognose ein wenig mehr Arbeit, aber für die Zwecke dieser spezifischen Berechnung werden wir es als die Prognose verweisen. Die exponentielle Glättungsberechnung ist wie folgt: Die letzten Perioden verlangen multipliziert mit dem Glättungsfaktor. PLUS Die letzten Perioden prognostiziert multipliziert mit (ein Minus der Glättungsfaktor). D in den letzten Perioden verlangt S der Glättungsfaktor, der in Dezimalform dargestellt wird (also 35 wäre als 0,35 dargestellt). F die letzten Perioden prognostiziert (die Ausgabe der Glättungsberechnung aus der vorherigen Periode). ODER (unter der Annahme eines Glättungsfaktors von 0,35) (D 0,35) (F 0,65) Es wird nicht viel einfacher als das. Wie Sie sehen können, alles, was wir für Dateneingaben brauchen, sind hier die jüngsten Periodennachfrage und die letzten Periodenvorhersage. Wir wenden den Glättungsfaktor (Gewichtung) auf die letzten Perioden fordern die gleiche Weise wie wir in der gewichteten gleitenden Durchschnittsberechnung. Wir setzen dann die verbleibende Gewichtung (1 minus der Glättungsfaktor) auf die letzten Periodenvorhersage ein. Da die jüngsten Periodenprognosen auf der Grundlage der vorherigen Periodennachfrage und der vorangegangenen Periodenprognosen erstellt wurden, die auf der Nachfrage nach dem darauffolgenden Zeitraum und der Prognose für den darauffolgenden Zeitraum basierten, der auf der Nachfrage nach dem Vorjahreszeitraum beruhte Das und die Prognose für den Zeitraum vor dem, der auf der Zeit vor diesem basierte. Nun, Sie können sehen, wie alle vorherigen Perioden Nachfrage in der Berechnung vertreten sind, ohne tatsächlich zurückzukehren und etwas neu zu berechnen. Und das ist, was die anfängliche Popularität der exponentiellen Glättung fuhr. Es war nicht, weil es eine bessere Arbeit der Glättung als gewichtet gleitenden Durchschnitt, es war, weil es einfacher war, in einem Computer-Programm zu berechnen. Und weil Sie nicht brauchen, darüber nachzudenken, welche Gewichtung, um vorherige Perioden zu geben oder wie viele vorherige Perioden zu verwenden, wie Sie in gewichteten gleitenden Durchschnitt. Und weil es nur kühler klang als gewichteter gleitender Durchschnitt. In der Tat könnte man argumentieren, dass der gewichtete gleitende Durchschnitt eine größere Flexibilität bietet, da Sie mehr Kontrolle über die Gewichtung der vorherigen Perioden haben. Die Realität ist entweder von diesen können respektable Ergebnisse liefern, also warum nicht mit einfacher und kühler klingen gehen. Exponentielle Glättung in Excel Lets sehen, wie dies tatsächlich in einer Kalkulationstabelle mit realen Daten aussehen würde. Kopiere das Copyright. Der Inhalt von InventoryOps ist urheberrechtlich geschützt und steht nicht zur Wiederveröffentlichung zur Verfügung. In Abbildung 1A haben wir eine Excel-Kalkulationstabelle mit 11 Wochen Nachfrage und eine exponentiell geglättete Prognose, die aus dieser Nachfrage berechnet wird. Ive verwendet einen Glättungsfaktor von 25 (0,25 in Zelle C1). Die aktuelle aktive Zelle ist die Zelle M4, die die Prognose für die Woche 12 enthält. Sie können in der Formelleiste sehen, die Formel ist (L3C1) (L4 (1-C1)). So sind die einzigen direkten Eingaben zu dieser Berechnung die vorherigen Periodenanforderungen (Zelle L3), die vorherigen Periodenvorhersage (Zelle L4) und der Glättungsfaktor (Zelle C1, dargestellt als absolute Zellreferenz C1). Wenn wir eine exponentielle Glättungsberechnung starten, müssen wir den Wert für die 1. Prognose manuell stecken. Also in der Zelle B4, anstatt einer Formel, haben wir nur die Nachfrage aus dem gleichen Zeitraum wie die Prognose eingegeben. In Zelle C4 haben wir unsere 1. exponentielle Glättungsberechnung (B3C1) (B4 (1-C1)). Wir können dann Cell C4 kopieren und in die Zellen D4 bis M4 einfügen, um den Rest unserer Prognosezellen zu füllen. Sie können nun auf eine beliebige Prognosezelle doppelklicken, um zu sehen, dass sie auf den vorherigen Periodenprognosezelle basiert und die vorherigen Perioden die Zelle verlangen. So erbt jede nachfolgende exponentielle Glättungsberechnung die Ausgabe der vorherigen exponentiellen Glättungsberechnung. Das ist, wie jede vorherige Periode Nachfrage in der letzten Periodenberechnung dargestellt wird, obwohl diese Berechnung nicht direkt auf diese vorherigen Perioden verweist. Wenn du Lust haben willst, kannst du Excels Trace Präzedenzfälle nutzen. Um dies zu tun, klicken Sie auf Cell M4, dann auf der Multifunktionsleiste (Excel 2007 oder 2010) klicken Sie auf die Registerkarte Formeln und klicken Sie dann auf Trace Precedents. Es wird die Verbindungslinien auf die 1. Stufe der Präzedenzfälle ziehen, aber wenn du auf Trace Precedents klickst, zieht es Verbindungslinien zu allen vorherigen Perioden, um dir die ererbten Beziehungen zu zeigen. Jetzt sehen wir, welche exponentielle Glättung für uns getan hat. Abbildung 1B zeigt ein Liniendiagramm unserer Nachfrage und Prognose. Sie sehen, wie die exponentiell geglättete Prognose den Großteil der Jaggedness (das Springen um) von der wöchentlichen Nachfrage entfernt, aber immer noch gelingt, dem zu folgen, was ein Aufwärtstrend bei der Nachfrage zu sein scheint. Youll auch bemerken, dass die geglättete Prognoselinie tendenziell niedriger als die Nachfragelinie ist. Dies ist als Trendverzögerung bekannt und ist ein Nebeneffekt des Glättungsprozesses. Jedes Mal, wenn Sie Glättung verwenden, wenn ein Trend vorhanden ist, wird Ihre Prognose hinter dem Trend liegen. Das gilt für jede Glättungstechnik. In der Tat, wenn wir diese Kalkulationstabelle fortsetzen und die Eingabe von niedrigeren Nachfragezahlen (einen Abwärtstrend) einführen würden, würden Sie die Nachfragelinie fallen sehen, und die Trendlinie bewegt sich darüber, bevor sie den Abwärtstrend verfolgt. Thats, warum ich schon erwähnt habe die Ausgabe aus der exponentiellen Glättung Berechnung, die wir eine Prognose nennen, braucht noch etwas mehr Arbeit. Es gibt viel mehr zu prognostizieren als nur Glättung der Beulen in der Nachfrage. Wir müssen zusätzliche Anpassungen für Dinge wie Trend Verzögerung, Saisonalität, bekannte Ereignisse, die die Nachfrage beeinflussen können, etc. Aber alles, was über den Umfang dieses Artikels ist. Sie werden wahrscheinlich auch in Begriffe wie doppel-exponentielle Glättung und dreifach-exponentielle Glättung. Diese Begriffe sind ein bisschen irreführend, da Sie die Nachfrage nicht mehrmals neu beherrschen (Sie könnten, wenn Sie wollen, aber das ist nicht der Punkt hier). Diese Begriffe stellen eine exponentielle Glättung auf zusätzliche Elemente der Prognose dar. Also mit einfacher, exponentieller Glättung glätten Sie die Basisanforderung, aber mit doppelter exponentieller Glättung glätten Sie die Basisanforderung und den Trend und mit der dreifach exponentiellen Glättung glätten Sie die Basisanforderung plus den Trend und die Saisonalität. Die andere am häufigsten gestellte Frage nach exponentieller Glättung ist, wo bekomme ich meinen Glättungsfaktor Es gibt keine magische Antwort hier, du musst verschiedene Glättungsfaktoren mit deinen Bedarfsdaten testen, um zu sehen, was dir die besten Ergebnisse bringt. Es gibt Berechnungen, die den Glättungsfaktor automatisch einstellen und ändern können. Diese fallen unter den Begriff adaptive Glättung, aber Sie müssen vorsichtig mit ihnen sein. Es gibt einfach keine perfekte Antwort, und du solltest keine Berechnungen ohne gründliche Prüfung umsetzen und ein gründliches Verständnis dafür schaffen, was diese Berechnung tut. Sie sollten auch was-if-Szenarien ausführen, um zu sehen, wie diese Berechnungen auf Änderungsänderungen reagieren, die derzeit nicht in den Bedarfsdaten vorhanden sind, die Sie zum Testen verwenden. Das Datenbeispiel, das ich bisher benutzt habe, ist ein sehr gutes Beispiel für eine Situation, in der man wirklich andere Szenarien testen muss. Das besondere Datenbeispiel zeigt einen etwas konsequenten Aufwärtstrend. Viele große Unternehmen mit sehr teuren Prognosesoftware haben sich in der nicht so weit entfernten Vergangenheit in große Schwierigkeiten gebracht, als ihre Software-Einstellungen, die für eine wachsende Wirtschaft gezwickt wurden, nicht gut reagierten, als die Wirtschaft stagnierte oder schrumpfte. Dinge wie diese passieren, wenn Sie nicht verstehen, was Ihre Berechnungen (Software) tatsächlich tut. Wenn sie ihre Prognosesysteme verstanden hätten, hätten sie gewusst, dass sie in den Fall gehen mussten, wenn es plötzliche dramatische Veränderungen in ihrem Geschäft gab. So haben Sie es die Grundlagen der exponentiellen Glättung erklärt. Wollen Sie mehr über die Verwendung von exponentiellen Glättung in einer tatsächlichen Prognose wissen, schauen Sie sich mein Buch Inventory Management Explained. Kopiere das Copyright. Der Inhalt von InventoryOps ist urheberrechtlich geschützt und steht nicht zur Wiederveröffentlichung zur Verfügung. Dave Piasecki Ist Inhaberin der Inventory Operations Consulting LLC. Ein Beratungsunternehmen, das Dienstleistungen im Zusammenhang mit Bestandsführung, Materialhandling und Lagerbetrieb erbringt. Er hat über 25 Jahre Erfahrung im Betriebsmanagement und kann über seine Website (Inventar) erreicht werden, wo er weitere relevante Informationen unterhält. Meine BusinessExponential-Glättung gewichtet nach Beobachtungen mit exponentiell abnehmenden Gewichten, um zukünftige Werte vorherzusagen. Dieses Glättungsschema beginnt mit der Einstellung (S2) bis (y1), wobei (Si) für geglättete Beobachtung oder EWMA steht und (y) für die ursprüngliche Beobachtung steht. Die Indizes beziehen sich auf die Zeiträume (1,, 2,, ldots,, n). Für die dritte Periode (S3 alpha y2 (1-alpha) S2) und so weiter. Es gibt keine (S1) die geglättete Serie beginnt mit der geglätteten Version der zweiten Beobachtung. Für jede Zeitperiode (t) wird der geglättete Wert (St) durch Berechnen von St alpha y (1-alpha) S ,,,,,,,,0 ausgedehnte Gleichung für (S5) gefunden. Beispielsweise ist die erweiterte Gleichung für die geglättete Wert (S5) ist: S5 alpha links (1-alpha) 0 y (1-alpha) 1 y (1-alpha) 2 y rechts (1-alpha) 3 S2. Veranschaulicht exponentielles Verhalten Dies veranschaulicht das exponentielle Verhalten. Die Gewichte, (alpha (1-alpha) t) nehmen geometrisch ab, und ihre Summe ist eine Einheit wie unten gezeigt, wobei eine Eigenschaft der geometrischen Reihe verwendet wird: alpha sum (1-alpha) i alpha left frac right 1 - (1-alpha) T Aus der letzten Formel können wir sehen, dass der Summationsausdruck zeigt, dass der Beitrag zum geglätteten Wert (St) bei jedem aufeinanderfolgenden Zeitraum weniger wird. Beispiel für (alpha 0,3) Sei (alpha 0,3). Beachten Sie, dass die Gewichte (alpha (1-alpha) t) exponentiell (geometrisch) mit der Zeit abnehmen. Die Summe der quadratischen Fehler (SSE) 208.94. Der Mittelwert der quadratischen Fehler (MSE) ist der SSE 11 19.0. Berechnen Sie für verschiedene Werte von (alpha) Die MSE wurde wieder für (alpha 0,5) berechnet und erwies sich als 16,29, so dass wir in diesem Fall ein (alpha) von 0,5 bevorzugen würden. Können wir es besser machen Wir könnten die bewährte Trial-and-Error-Methode anwenden. Dies ist eine iterative Prozedur, die mit einem Bereich von (alpha) zwischen 0,1 und 0,9 beginnt. Wir bestimmen die beste erste Wahl für (alpha) und suchen dann zwischen (alpha - Delta) und (alpha Delta). Wir könnten dies noch einmal wiederholen, um die besten (Alpha) bis 3 Dezimalstellen zu finden. Nichtlineare Optimierer können verwendet werden. Aber es gibt bessere Suchmethoden wie das Marquardt-Verfahren. Dies ist ein nichtlinearer Optimierer, der die Summe der Quadrate von Resten minimiert. Im Allgemeinen sollten die meisten gut entworfenen statistischen Softwareprogramme in der Lage sein, den Wert von (Alpha) zu finden, der das MSE minimiert. Beispiel-Diagramm mit geglätteten Daten für 2 Werte von (alpha) Einführung in ARIMA: Nichtseasonal-Modelle ARIMA (p, d, q) Prognosegleichung: ARIMA-Modelle sind theoretisch die allgemeinste Klasse von Modellen für die Vorhersage einer Zeitreihe, die sein kann (Wenn nötig), vielleicht in Verbindung mit nichtlinearen Transformationen wie zB Protokollierung oder Entleerung (falls nötig). Eine zufällige Variable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Serie hat keinen Trend, ihre Variationen um ihre Mittel haben eine konstante Amplitude, und es wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen zufälligen Zeitmuster sehen immer in einem statistischen Sinn gleich aus. Die letztere Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder äquivalent, daß sein Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieses Formulars kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn man offensichtlich ist) könnte ein Muster der schnellen oder langsamen mittleren Reversion oder sinusförmigen Oszillation oder eines schnellen Wechsels im Zeichen sein , Und es könnte auch eine saisonale Komponente haben. Ein ARIMA-Modell kann als 8220filter8221 betrachtet werden, das versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Prognosegleichung für eine stationäre Zeitreihe ist eine lineare (d. h. regressionstypische) Gleichung, bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und Verzögerungen der Prognosefehler bestehen. Das heißt: vorhergesagter Wert von Y eine Konstante undeiner gewichteten Summe von einem oder mehreren neueren Werten von Y und einer gewichteten Summe von einem oder mehreren neueren Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, ist es ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit Standardregressionssoftware ausgestattet werden kann. Zum Beispiel ist ein autoregressives (8220AR (1) 8221) Modell erster Ordnung für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur Y um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt hinterlässt). Wenn einige der Prädiktoren die Fehler der Fehler sind, ist es ein ARIMA-Modell, es ist kein lineares Regressionsmodell, denn es gibt keine Möglichkeit, 828last period8217s error8221 als unabhängige Variable anzugeben: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem bei der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen des Modells8217 nicht lineare Funktionen der Koeffizienten sind. Obwohl sie lineare Funktionen der vergangenen Daten sind. So müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) geschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Die Verzögerungen der stationärisierten Serien in der Prognosegleichung werden als quartalspezifische Begriffe bezeichnet, die Verzögerungen der Prognosefehler werden als quadratische Begrenzungsterme bezeichnet, und eine Zeitreihe, die differenziert werden muss, um stationär zu sein, wird als eine quotintegrierte Quotversion einer stationären Serie bezeichnet. Random-Walk - und Random-Trend-Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA-Modellen. Ein Nicht-Seasonal-ARIMA-Modell wird als ein Quoten-Modell von quaremA (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten Nichtseasondifferenzen und q die Anzahl der verzögerten Prognosefehler in Die Vorhersagegleichung. Die Prognosegleichung wird wie folgt aufgebaut. Zuerst bezeichne y die d-te Differenz von Y. Das bedeutet: Beachten Sie, dass die zweite Differenz von Y (der Fall d2) nicht der Unterschied von 2 Perioden ist. Vielmehr ist es der erste Unterschied zwischen dem ersten Unterschied. Welches das diskrete Analog einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe und nicht deren lokaler Trend. In Bezug auf y. Die allgemeine Prognosegleichung lautet: Hier werden die gleitenden Durchschnittsparameter (9528217s) so definiert, dass ihre Zeichen in der Gleichung nach der von Box und Jenkins eingeführten Konventionen negativ sind. Einige Autoren und Software (einschließlich der R-Programmiersprache) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt sind, gibt es keine Mehrdeutigkeit, aber it8217s wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden die Parameter dort mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnen Sie mit der Bestimmung der Reihenfolge der Differenzierung (D) die Serie zu stationieren und die Brutto-Merkmale der Saisonalität zu entfernen, vielleicht in Verbindung mit einer abweichungsstabilisierenden Transformation wie Protokollierung oder Entleerung. Wenn Sie an dieser Stelle anhalten und vorhersagen, dass die differenzierte Serie konstant ist, haben Sie nur einen zufälligen Spaziergang oder ein zufälliges Trendmodell ausgestattet. Allerdings können die stationärisierten Serien immer noch autokorrelierte Fehler aufweisen, was darauf hindeutet, dass in der Prognosegleichung auch eine Anzahl von AR-Terme (p 8805 1) und einigen einigen MA-Terme (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die am besten für eine gegebene Zeitreihe sind, wird in späteren Abschnitten der Noten (deren Links oben auf dieser Seite), aber eine Vorschau auf einige der Typen diskutiert werden Von nicht-seasonalen ARIMA-Modellen, die häufig angetroffen werden, ist unten angegeben. ARIMA (1,0,0) Autoregressives Modell erster Ordnung: Wenn die Serie stationär und autokorreliert ist, kann man sie vielleicht als Vielfaches ihres eigenen vorherigen Wertes und einer Konstante voraussagen. Die prognostizierte Gleichung in diesem Fall ist 8230which ist Y regressed auf sich selbst verzögerte um einen Zeitraum. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann wäre der konstante Term nicht enthalten. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell das Mittelwiederkehrungsverhalten, bei dem der nächste Periode8217s-Wert 981 mal als vorher vorausgesagt werden sollte Weit weg von dem Mittelwert als dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelrückkehrverhalten mit einem Wechsel von Zeichen, d. h. es sagt auch, daß Y unterhalb der mittleren nächsten Periode liegt, wenn es über dem Mittelwert dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)) wäre auch ein Y-t-2-Term auf der rechten Seite und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten könnte ein ARIMA (2,0,0) Modell ein System beschreiben, dessen mittlere Reversion in einer sinusförmig oszillierenden Weise stattfindet, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Spaziergang: Wenn die Serie Y nicht stationär ist, ist das einfachste Modell für sie ein zufälliges Spaziergangmodell, das als Begrenzungsfall eines AR (1) - Modells betrachtet werden kann, in dem das autoregressive Koeffizient ist gleich 1, dh eine Serie mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann wie folgt geschrieben werden: wobei der konstante Term die mittlere Periodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein Nicht-Intercept-Regressionsmodell eingebaut werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es (nur) eine nicht-seasonale Differenz und einen konstanten Term enthält, wird es als ein quotARIMA (0,1,0) Modell mit constant. quot eingestuft. Das random-walk-without - drift-Modell wäre ein ARIMA (0,1, 0) Modell ohne Konstante ARIMA (1,1,0) differenzierte Autoregressive Modell erster Ordnung: Wenn die Fehler eines zufälligen Walk-Modells autokorreliert werden, kann das Problem eventuell durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung behoben werden - - ie Durch den Rücktritt der ersten Differenz von Y auf sich selbst um eine Periode verzögert. Dies würde die folgende Vorhersagegleichung ergeben: die umgewandelt werden kann Dies ist ein autoregressives Modell erster Ordnung mit einer Reihenfolge von Nicht-Seasonal-Differenzen und einem konstanten Term - d. h. Ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) ohne konstante, einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem zufälligen Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Erinnern Sie sich, dass für einige nichtstationäre Zeitreihen (z. B. diejenigen, die geräuschvolle Schwankungen um ein langsam variierendes Mittel aufweisen), das zufällige Wandermodell nicht so gut wie ein gleitender Durchschnitt von vergangenen Werten ausführt. Mit anderen Worten, anstatt die jüngste Beobachtung als die Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt von vergangenen Werten, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl von mathematisch äquivalenten Formen geschrieben werden. Eine davon ist die so genannte 8220error Korrektur8221 Form, in der die vorherige Prognose in Richtung des Fehlers eingestellt wird, die es gemacht hat: Weil e t-1 Y t-1 - 374 t-1 per Definition, kann dies wie folgt umgeschrieben werden : Das ist eine ARIMA (0,1,1) - ohne Konstante Prognose Gleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung passen können, indem Sie es als ARIMA (0,1,1) Modell ohne Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Erinnern daran, dass im SES-Modell das Durchschnittsalter der Daten in den 1-Perioden-Prognosen 1 945 beträgt. Dies bedeutet, dass sie dazu neigen, hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückzukehren. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA (0,1,1) - without-constant-Modells 1 (1 - 952 1) beträgt. So, zum Beispiel, wenn 952 1 0.8, ist das Durchschnittsalter 5. Wenn 952 1 sich nähert, wird das ARIMA (0,1,1) - without-konstantes Modell zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Nähert sich 0 wird es zu einem zufälligen Walk-ohne-Drift-Modell. Was ist der beste Weg, um Autokorrelation zu korrigieren: Hinzufügen von AR-Terme oder Hinzufügen von MA-Terme In den vorangegangenen zwei Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Walk-Modell auf zwei verschiedene Arten festgelegt: durch Hinzufügen eines verzögerten Wertes der differenzierten Serie Zur Gleichung oder Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz ist am besten Eine Faustregel für diese Situation, die später noch ausführlicher erörtert wird, ist, dass eine positive Autokorrelation in der Regel am besten durch Hinzufügen eines AR-Termes zum Modell behandelt wird und eine negative Autokorrelation wird meist am besten durch Hinzufügen eines MA Begriff. In geschäftlichen und ökonomischen Zeitreihen entsteht oftmals eine negative Autokorrelation als Artefakt der Differenzierung. (Im Allgemeinen verringert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation verursachen.) So wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Term begleitet wird, häufiger als ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) mit konstanter, einfacher, exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell erhalten Sie gewisse Flexibilität. Zunächst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor größer als 1 in einem SES-Modell, was in der Regel nicht durch das SES-Modell-Anpassungsverfahren erlaubt ist. Zweitens haben Sie die Möglichkeit, einen konstanten Begriff im ARIMA-Modell einzubeziehen, wenn Sie es wünschen, um einen durchschnittlichen Trend ungleich Null abzuschätzen. Das ARIMA (0,1,1) - Modell mit Konstante hat die Vorhersagegleichung: Die Prognosen von einem Periodenvorhersage aus diesem Modell sind qualitativ ähnlich denen des SES-Modells, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise ein Schräge Linie (deren Steigung gleich mu ist) anstatt einer horizontalen Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare exponentielle Glättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei Nichtseason-Differenzen in Verbindung mit MA-Terme verwenden. Der zweite Unterschied einer Reihe Y ist nicht einfach der Unterschied zwischen Y und selbst, der um zwei Perioden verzögert ist, sondern vielmehr der erste Unterschied der ersten Differenz - i. e. Die Änderung der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Y t - Y t - 1) - (Y t - 1 - Y t - 2) Y t - 2Y t - 1 Y t - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie misst die quotaccelerationquot oder quotcurvaturequot in der Funktion zu einem gegebenen Zeitpunkt. Das ARIMA (0,2,2) - Modell ohne Konstante prognostiziert, dass die zweite Differenz der Serie gleich einer linearen Funktion der letzten beiden Prognosefehler ist: die umgeordnet werden kann: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein Sonderfall. Es verwendet exponentiell gewichtete Bewegungsdurchschnitte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Serie abzuschätzen. Die langfristigen Prognosen von diesem Modell konvergieren zu einer geraden Linie, deren Hang hängt von der durchschnittlichen Tendenz, die gegen Ende der Serie beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte Trend-lineare exponentielle Glättung. Dieses Modell wird in den beiliegenden Folien auf ARIMA-Modellen dargestellt. Es extrapoliert den lokalen Trend am Ende der Serie, aber erhebt es bei längeren Prognosehorizonten, um eine Note des Konservatismus einzuführen, eine Praxis, die empirische Unterstützung hat. Sehen Sie den Artikel auf quotWhy der Damped Trend Workquot von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, an Modellen zu bleiben, bei denen mindestens eines von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) zu passen, da dies wahrscheinlich zu Überfüllung führen wird Und quotcommon-factorquot-Themen, die ausführlicher in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen diskutiert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen sind einfach in einer Kalkulationstabelle zu implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte der ursprünglichen Zeitreihen und vergangene Werte der Fehler bezieht. So können Sie eine ARIMA-Prognosekalkulationstabelle einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorhergehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in anderen Zellen auf der Kalkulationstabelle gespeichert sind.

No comments:

Post a Comment